Термодинамическая энтропия

Термодинамическая энтропия

К макроскопическим параметрам термодинамической системы относятся давление, объём и температура. Однако существует ещё одна важная физическая величина, которую используют для описания состояний и процессов в термодинамических системах. Её называют энтропией.

Что такое энтропия

Термодинамическая энтропия

Впервые это понятие ввёл в 1865 г. немецкий физик Рудольф Клаузиус. Энтропией он назвал функцию состояния термодинамической системы, определяющую меру необратимого рассеивания энергии.

Что же такое энтропия?

Прежде чем ответить на этот вопрос, познакомимся с понятием «приведенной теплоты». Любой термодинамический процесс, проходящий в системе, состоит из какого-то количества переходов системы из одного состояния в другое. Приведенной теплотой называют отношение количества теплоты в изотермическом процессе к температуре, при которой происходит передача этой теплоты.

Q' = Q/T.

Для любого незамкнутого термодинамического процесса существует такая функция системы, изменение которой при переходе из одного состояния в другое равно сумме приведенных теплот. Этой функции Клаузиус дал название «энтропия» и обозначил её буквой S, а отношение общего количества теплоты ∆Q к величине абсолютной температуры Т назвал изменением энтропии.

Термодинамическая энтропия 

Обратим внимание на то, что формула Клаузиуса определяет не само значение энтропии, а только её изменение.

Что же представляет собой «необратимое рассевание энергии» в термодинамике?

Одна из формулировок второго закона термодинамики выглядит следующим образом: "Невозможен процесс, единственным результатом которого является превращение в работу всего количества теплоты, полученного системой". То есть часть теплоты превращается в работу, а какая-то её часть рассеивается. Этот процесс необратим. В дальнейшем рассеиваемая энергия уже не может совершать работу. Например, в реальном тепловом двигателе рабочему телу передаётся не вся теплота. Часть её рассеивается во внешнюю среду, нагревая её.

В идеальной тепловой машине, работающей по циклу Карно, сумма всех приведенных теплот равна нулю. Это утверждение справедливо и для любого квазистатического (обратимого) цикла. И неважно, из какого количества переходов из одного состояния в другое состоит такой процесс.

Если разбить произвольный термодинамический процесс на участки бесконечно малой величины, то приведенная теплота на каждом таком участке будет равна δQ/T. Полный дифференциал энтропии dS = δQ/T.

Энтропию называют мерой способности теплоты необратимо рассеиваться. Её изменение показывает, какое количество энергии беспорядочно рассеивается в окружающую среду в виде теплоты.

В замкнутой изолированной системе, не обменивающейся теплом с окружающей средой, при обратимых процессах энтропия не изменяется. Это означает, что дифференциал dS = 0. В реальных и необратимых процессах передача тепла происходит от тёплого тела к холодному. В таких процессах энтропия всегда увеличивается (dS ˃ 0). Следовательно, она указывает направление протекания термодинамического процесса.

Формула Клаузиуса, записанная в виде dS = δQ/T, справедлива лишь для квазистатических процессов. Это идеализированные процессы, являющиеся чередой состояний равновесия, следующих непрерывно друг за другом. Их ввели в термодинамику для того, чтобы упростить исследования реальных термодинамических процессов. Считается, что в любой момент времени квазистатическая система находится в состоянии термодинамического равновесия. Такой процесс называют также квазиравновесным.

Конечно, в природе таких процессов не существует. Ведь любое изменение в системе нарушает её равновесное состояние. В ней начинают происходить различные переходные процессы и процессы релаксации, стремящиеся вернуть систему в состояние равновесия. Но термодинамические процессы, протекающие достаточно медленно, вполне могут рассматриваться как квазистатические.

На практике существует множество термодинамических задач, для решения которых требуется создание сложной аппаратуры, создание давления в несколько сот тысяч атмосфер, поддержание очень высокой температуры в течение длительного времени. А квазистатические процессы позволяют рассчитать энтропию для таких реальных процессов, предсказать, как может проходить тот или иной процесс, реализовать который на практике очень сложно.

Закон неубывания энтропии 

Второй закон термодинамики на основании понятия энтропии формулируется так: «В изолированной системе энтропия не уменьшается». Этот закон называют также законом неубывания энтропии.

Если в какой-то момент времени энтропия замкнутой системы отличается от максимальной, то в дальнейшем она может только увеличиваться, пока не достигнет максимального значения. Система придёт в состояние равновесия.

Клаузиус был уверен, что Вселенная представляет собой замкнутую систему. А раз так, то её энтропия стремится достичь максимального значения. Это означает, что когда-нибудь все макроскопические процессы в ней прекратятся, и наступит «тепловая смерть». Но американский астроном Эдвин Пауэлл Хаблл доказал, что Вселенную нельзя назвать изолированной термодинамической системой, так как она расширяется. Советский физик академик Ландау считал, что закон неубывания энтропии к Вселенной применять нельзя, так как она находится в переменном гравитационном поле. Современная наука пока не в состоянии дать ответ на вопрос, замкнутой ли системой является наша Вселенная или нет.

Принцип Больцмана

Термодинамическая энтропия

Людвиг Больцман

Любая замкнутая термодинамическая система стремится к состоянию равновесия. Все самопроизволные процессы, происходящие в ней, сопровождаются ростом энтропии. 

В 1877 г. австрийский физик-теоретик Людвиг Больцман связал энтропию термодинамического состояния с количеством микросостояний системы. Считается, что саму формулу расчёта значения энтропии позднее вывел немецкий физик-теоретик Макс Планк.

S = k · lnW,

где k = 1,38·10−23 Дж/К - постоянная Больцмана; W - количество микросостояний системы, которые реализуют данное макростатическое состояние, или число способов, которыми это состояние может быть реализовано.

Мы видим, что энтропия зависит только от состояния системы и не зависит от того, каким способом система перешла в это состояние.

Физики считают энтропию величиной, характеризующей степень беспорядка термодинамической системы. Любая термодинамическая система всегда стремится уравновесить свои параметры с окружающей средой. К такому состоянию она приходит самопроизвольно. И когда состояние равновесия достигнуто, система уже не может совершать работу. Можно считать, что она находится в беспорядке.

Энтропия характеризует направление протекания термодинамического процесса обмена теплом между системой и внешней средой. В замкнутой термодинамической системе она определяет, в каком направлении протекают самопроизвольные процессы.

Все процессы, протекающие в природе, необратимы. Поэтому они протекают в направлении увеличения энтропии.