Первый закон термодинамики

Первый закон термодинамики

Первое начало термодинамики, или первый закон термодинамики, называют законом сохранения энергии для термодинамической системы.

Из истории

Первый закон термодинамики 

Юлиус Роберт фон Майер

Впервые этот закон был сформулирован немецким врачом и естествоиспытателем Юлиусом Робертом фон Майером. В качестве судового врача в 1840 г. он прибыл на остров Ява. Во время лечения больных ему приходилось делать кровопускание. И вот тут Майер обратил внимание на то, что венозная кровь у жителей тропиков светлее, чем у европейцев. Она была почти такой же ярко-красной, как и артериальная кровь. Учёный нашёл объяснение этому факту, предположив, что причина кроется в разнице температур между теплом собственного организма человека и теплом окружающей среды. В тропиках высокая температура, и организму требуется вырабатывать меньше теплоты. Следовательно, он сжигает меньше кислорода. Его в крови остаётся больше, и кровь переходит из артерий в вены, оставаясь практически такого же цвета. А в холодном климате организм нуждается в большем количестве тепла. И чем больше кислорода потребляет организм для этой цели, тем заметнее разница в цвете артериальной и венозной крови.

Теплоту организм получает, сжигая кислород, то есть, совершая работу. Работа превращается в теплоту. Обоснование первого закона термодинамики Майер опубликовал в 1842 г. в своей работе «Замечания о силах неживой природы». Более того, учёный нашёл и соотношение между количеством работы и количеством теплоты, полученной в результате этой работы.

Это же соотношение, независимо от Майера, экспериментально установил английский физик Джеймс Прескотт Джоуль. Результаты оказались такими же, как и у Майера. В разных экспериментах одно и то же количество работы превращалось в одно и то же количество тепла, и наоборот.

Первый закон термодинамики

Первый закон термодинамики

В изолированной физической системе энергия никуда не исчезает. Она лишь переходит из одной формы в другую. Так утверждает общий закон сохранения энергии. Он справедлив и для изолированной термодинамической системы. Запас энергии в такой системе также остаётся постоянным. Работа превращается в теплоту, а теплота - в работу.

В результате различных процессов, происходящих в термодинамической системе, начальное и конечное состояния системы отличаются. Так как внутренняя энергия системы U зависит только от её состояния - давления, объёма и температуры (U = U(P, V, T) ), то изменение энергии U определяется начальным и конечным состоянием системы и не зависит от того, каким образом она перешла из одного состояния в другое.

U = U2 -U1.

Внутреннюю энергию термодинамической системы можно изменить, сообщив ей некоторое количество теплоты или совершив над ней работу. Математически связь между количеством теплоты, полученной термодинамической системой, изменением её внутренней энергии и работой, совершённой за счёт этой теплоты математически выглядит так:

U = Q - A, или Q = U + A,

где U - изменение внутренней энергии системы при сообщении ей теплоты;

Q - количество теплоты, полученное системой при теплопередаче;

A - работа, совершённая системой против внешних сил.

Это и есть математическое выражение первого закона термодинамики.

Теплота, которую получила термодинамическая система, расходуется на изменение её внутренней энергии и работу, совершённую над внешними телами.

При переходе из начального состояния в конечное термодинамическая система может получать теплоту различными способами. В технической термодинамике положительной считают теплоту, получаемую системой, а отрицательной - теплоту, которую система отдаёт. Общее количество теплоты Q - это алгебраическая сумма всех количеств теплоты, получаемых или отдаваемых системой.

В отличие от теплоты работа, совершённая системой, не является её характеристикой. Она зависит от пути перехода системы из начального состояния в конечное. Поэтому работа характеризует сам процесс перехода.

Частные случаи первого закона термодинамики

Первый закон термодинамики удобно рассматривать на примере изопроцессов для газа.

При изохорном процессе работа не совершается, так как объём газа остаётся постоянным (V = const). Поэтому Q = U.

Изотермический процесс в системе происходит при постоянной температуре (T = const). Следовательно, вся теплота, полученная системой, расходуется на совершение работы. Так как U=0, то Q = A.

Изобарный процесс происходит при постоянном давлении (P = const).Теплота, сообщаемая системе, идёт и на изменение внутренней энергии, и на совершение работы.

Q = U + A

Работа, которую газ совершает при расширении или сжатии, равна A = P·∆V.

Отсюда Q = U + P·∆V.

При адиабатическом процессе нет обмена теплотой с внешней средой. Q = 0, А = -∆U. Это означает, что работа совершается за счёт уменьшения внутренней энергии системы.

Термодинамический цикл

Первый закон термодинамики

Если термодинамическая система, независимо от того, какие превращения (нагревания, охлаждения, сжатия, расширения, химические превращения и др.) в ней не происходили бы, в конечном счёте возвращается в своё первоначальное состояние, то термодинамический процесс, в результате которого это происходит, называется термодинамическим циклом.

Пример термодинамического цикла - круговорот воды в природе.

Под воздействием солнечных лучей быстро нагревается вода в лужах, образовавшихся после дождя. Растёт её температура, и вода начинает испаряться, при этом увеличиваясь в объёме. Пар поднимается вверх. Там он остывает, и его объём снова уменьшается. Конденсируясь, пар превращается в облако. Капли дождя падают на землю и снова образуют лужи. Цикл завершается. После этого процесс повторяется снова.

В результате термодинамического цикла в системе всё остаётся по-прежнему, хотя в процессе цикла совершалась работа и выделялась или поглощалась теплота. Все параметры системы, несмотря на процессы, происходящие в ней, возвращаются в исходное состояние. В этом случае изменения внутренней энергии не происходит. Следовательно, работа, совершённая системой по замкнутому циклу, равна количеству теплоты.

A = Q, или Q - A = 0,

В замкнутом цикле любая произведённая работа преобразуется в теплоту.

На основе замкнутых циклов построена работа тепловых машин.

Тепловые двигатели

Первый закон термодинамики

Принцип преобразования внутренней энергии системы в механическую лежит в основе тепловых двигателей. Такой двигатель представляет собой тепловую машину, превращающую тепло в механическую энергию.

Основные части таких двигателей - нагреватель, рабочее тело и охладитель. Очень часто рабочим телом в тепловом двигателе служит газ. Получая теплоту от нагревателя, он расширяется и совершает работу. Чтобы работа такого двигателя не прекращалась, параметры рабочего тела, в нашем случае газа, после совершения работы возвращаются в первоначальное состояние (газ охлаждается в холодильнике).
Далее процесс повторяется сначала. Реальные тепловые машины (двигатели внутреннего сгорания, паровые машины и др.) работают циклически, повторяя теплопередачу и превращение теплоты в работу. Рабочим телом могут быть пары бензина, водяные пары, воздух, уголь, нефть и др.

Вещество с более высокой температурой находится в резервуаре, который называется нагревателем, а с более низкой - в резервуаре, называемом холодильником.

Для любой тепловой машины очень важна такая величина, как коэффициент полезного действия (КПД). Это отношение количества работы, совершённой двигателем, к количеству теплоты, полученной от нагревателя.

А = QH - QХ,

где QH - количество теплоты, отданное нагревателем рабочему телу;

QХ - количество теплоты, которое рабочее тело отдаёт охладителю.

Первый закон термодинамики 

Так как часть теплоты теряется при передаче, то КПД двигателя всегда меньше единицы.

Наибольший КПД возможен в двигателе Карно.

Вечный двигатель первого рода

Первый закон термодинамики 

Создание двигателя, который мог бы совершать рабóту, превышающую затраченную на её производство энергию, с древних времён было мечтой многих изобретателей.

Вечным двигателем первого рода называют устройство, которое может бесконечно совершать работу, не затрачивая на это энергии. Но согласно первому закону термодинамики термодинамическая система может совершать работу за счёт теплоты, получаемой извне и убыли своей внутренней энергии.

A = Q - U

Если к системе не подводить теплоту, то работу можно совершить только за счёт внутренней энергии. Но в таком случае через некоторое время запас этой энергии иссякнет. Это означает, что нельзя создать такую машину, которая смогла бы работать без подведения энергии извне. Таким образом, вечный двигатель невозможен. Эта также одна из формулировок первого закона термодинамики.