Идеальный газ. Уравнение идеального газа. Изопроцессы

Идеальный газ. Уравнение идеального газа. Изопроцессы

Газ - одно из четырёх агрегатных состояний, в которых может находиться вещество.

Частицы, из которых состоит газ, очень подвижны. Они практически свободно и хаотично движутся, периодически сталкиваясь друг с другом подобно биллиардным шарам. Такое столкновение называют упругим столкновением. Во время столкновения они резко изменяют характер своего движения.

Так как в газообразных веществах расстояние между молекулами, атомами и ионами намного превышает их размеры, то между собой эти частицы взаимодействую очень слабо, и их потенциальная энергия взаимодействия очень мала по сравнению с кинетической.

Связи между молекулами в реальном газе сложные. Поэтому также довольно сложно описывать зависимость его температуры, давления, объёма от свойств самих молекул, их количества, скорости их движения. Но задача значительно упрощается, если вместо реального газа рассматривать его математическую модель - идеальный газ.

Предполагается, что в модели идеального газа между молекулами нет сил притяжения и отталкивания. Все они движутся независимо друг от друга. И к каждой из них можно применить законы классической механики Ньютона. А между собой они взаимодействуют только во время упругих столкновений. Время самого столкновения очень мало по сравнению со временем между столкновениями.

Классический идеальный газ

Идеальный газ. Уравнение идеального газа. Изопроцессы 

Попробуем представить молекулы идеального газа маленькими шариками, находящимися в огромном кубе на большом расстоянии друг от друга. Из-за этого расстояния они не могут друг с другом взаимодействовать. Следовательно, их потенциальная энергия равна нулю. Но эти шарики двигаются с огромной скоростью. А значит, обладают кинетической энергией. Когда они сталкиваются друг с другом и со стенками куба, они ведут себя как мячики, то есть упруго отскакивают. При этом они меняют направление своего движения, но не меняют скорости. Примерно так выглядит движение молекул в идеальном газе.

Газ можно считать идеальным, если в нём выполняются следующие допущения:

  1. Потенциальная энергия взаимодействия молекул идеального газа настолько мала, что ею пренебрегают по сравнению с кинетической энергией.
  2. Молекулы в идеальном газе также имеют настолько маленькие размеры, что их можно считать материальными точками. А это означает, что и их суммарный объём также ничтожно мал по сравнению с объёмом сосуда, в котором находится газ. И этим объёмом также пренебрегают.
  3. Среднее время между столкновениями молекул намного превышает время их взаимодействия при соударении. Поэтому временем взаимодействия пренебрегают также.

Газ всегда принимает форму сосуда, в котором находится. Движущиеся частицы сталкиваются друг с другом и со стенками сосуда. Во время удара каждая молекула действует на стенку с некоторой силой в течение очень короткого промежутка времени. Так возникает давление. Суммарное давление газа складывается из давлений всех молекул.

Уравнение состояния идеального газа

Идеальный газ. Уравнение идеального газа. Изопроцессы 

Состояние идеального газа характеризуют три параметра: давление, объём и температура. Зависимость между ними описывается уравнением:

Идеальный газ. Уравнение идеального газа. Изопроцессы 

где р - давление,

VM - молярный объём,

R - универсальная газовая постоянная,

T - абсолютная температура (градусы Кельвина).

Так как VM = V/n, где V - объём, n - количество вещества, а n = m/M, то

Идеальный газ. Уравнение идеального газа. Изопроцессы 

где m - масса газа, М - молярная масса. Это уравнение называется уравнением Менделеева-Клайперона.

При постоянной массе уравнение приобретает вид:

Идеальный газ. Уравнение идеального газа. Изопроцессы 

Это уравнение называют объединённым газовым законом.

Используя закон Менделеева-Клайперона, можно определить один из параметров газа, если известны два других.

Изопроцессы

С помощью уравнения объединённого газового закона можно исследовать процессы, в которых масса газа и один из важнейших параметров - давление, температура или объём - остаются постоянными. В физике такие процессы называются изопроцессами.

Из объединённого газового закона вытекают другие важнейшие газовые законы: закон Бойля-Мариотта, закон Гей-Люссака, закон Шарля, или второй закон Гей-Люссака.

Изотермический процесс

Идеальный газ. Уравнение идеального газа. Изопроцессы

Процесс, в котором изменяются давление или объём, но температура остаётся постоянной, называется изотермическим процессом.

При изотермическом процессе T = const, m = const.

Поведение газа в изотермическом процессе описывает закон Бойля-Мариотта. Этот закон открыли экспериментальным путём английский физик Роберт Бойль в 1662 г. и французский физик Эдм Мариотт в 1679 г. Причём сделали они это независимо друг от друга. Закон Бойля-Мариотта формулируется следующим образом: В идеальном газе при постоянной температуре произведение давления газа на его объём также постоянно.

Уравнение Бойля-Мариотта можно вывести из объединённого газового закона. Подставив в формулу Т = const, получаем

p·V = const

Это и есть закон Бойля-Мариотта. Из формулы видно, что давление газа при постоянной температуре обратно пропорционально его объёму. Чем выше давление, тем меньше объём, и наоборот.

Как объяснить это явление? Почему же при увеличении объёма газа его давление становится меньше?

Так как температура газа не меняется, то не меняется и частота ударов молекул о стенки сосуда. Если увеличивается объём, то концентрация молекул становится меньше. Следовательно, на единицу площади придётся меньшее количество молекул, которые соударяются со стенками в единицу времени. Давление падает. При уменьшении объёма число соударений, наоборот, возрастает. Соответственно растёт и давление.

Графически изотермический процесс отображают на плоскости кривой, которую называют изотермой. Она имеет форму гиперболы.

Идеальный газ. Уравнение идеального газа. Изопроцессы

Каждому значению температуры соответствует своя изотерма. Чем выше температура, тем выше расположена соответсвующая ей изотерма.

Изобарный процесс

Идеальный газ. Уравнение идеального газа. Изопроцессы

Процессы изменения температуры и объёма газа при постоянном давлении, называются изобарными. Для этого процесса m = const, P = const.

Зависимость объёма газа от его температуры при неизменяющемся давлении также была установлена экспериментальным путём французским химиком и физиком Жозефом Луи Гей-Люссаком, опубликовавшем его в 1802 г. Поэтому её называют законом Гей-Люссака: "При постоянном давлении отношение объёма постоянной массы газа к его абсолютной температуре является постоянной величиной".

При Р = const уравнение объединённого газового закона превращается в уравнение Гей-Люссака.

Идеальный газ. Уравнение идеального газа. Изопроцессы 

Пример изобарного процесса - газ, находящийся внутри цилиндра, в котором перемещается поршень. При повышении температуры растёт частота ударов молекул о стенки. Увеличивается давление, и поршень приподнимается. В итоге увеличивается объём, занимаемый газом в цилиндре.

Графически изобарный процесс отображается прямой линией, которая называется изобарой.

Идеальный газ. Уравнение идеального газа. Изопроцессы

Чем больше давление в газе, тем ниже расположена на графике соответствующая изобара.

Изохорный процесс

Идеальный газ. Уравнение идеального газа. Изопроцессы

Изохорным, или изохорическим, называют процесс изменения давления и температуры идеального газа при постоянном объёме.

Для изохорного процесса m = const, V = const.

Представить такой процесс очень просто. Он происходит в сосуде фиксированного объёма. Например, в цилиндре, поршень в котором не двигается, а жёстко закреплён.

Изохорный процесс описывается законом Шарля: «Для данной массы газа при постоянном объёме его давление пропорционально температуре». Французский изобретатель и учёный Жак Александр Сезар Шарль установил эту зависимость с помощью экспериментов в 1787 г. В 1802 г. её уточнил Гей-Люссак. Поэтому этот закон иногда называют вторым законом Гей-Люссака.

При V = const из уравнения объединённого газового закона получаем уравнение закона Шарля, или второго закона Гей-Люссака.

Идеальный газ. Уравнение идеального газа. Изопроцессы 

При постоянном объёме давление газа увеличивается, если увеличивается его температура.

На графиках изохорный процесс отображается линией, которая называется изохорой.

Идеальный газ. Уравнение идеального газа. Изопроцессы

Чем больше объём занимаемый газом, тем ниже расположена изохора, соответствующая этому объёму.

В реальности ни один параметр газа невозможно поддерживать неизменным. Это возможно сделать лишь в лабораторных условиях.

Конечно, в природе идеального газа не существует. Но в реальных разреженных газах при очень низкой температуре и давлении не выше 200 атмосфер расстояние между молекулами намного превышает их размеры. Поэтому их свойства приближаются к свойствам идеального газа.