Создание спектроскопа

Создание спектроскопа

Спектроскопом называют оптическое устройство для получения, наблюдения и анализа спектра излучения.

Простейшим спектроскопом можно считать призму Ньютона, с помощью которой он открыл спектр видимого света, представляющий собой непрерывную полосу из семи разных цветов, расположенных в последовательности : красный, оранжевый, жёлтый, зелёный, голубой, синий, фиолетовый. Но с помощью своего устройства Ньютон только констатировал, что видимый белый свет состоит из разных цветов, но не мог исследовать параметры цветовых волн.

Как устроен спектроскоп

Создание спектроскопа

Первым создателем спектроскопа считают немецкого физика Йозефа Фраунгофера. Спектроскопическая установка, созданная им, представляла собой щель в ставне, через которую солнечный свет падал на призму. Спектр цветов не проектировался на экран, а попадал в объектив зрительной трубы, установленной за призмой. Таким образом, учёный наблюдал его субъективно.

Позднее по такому принципу был построен простейший спектроскоп, который состоял из 2 труб и помещённой между ними треугольной стеклянной призмы. Первая труба называлась коллиматором. На одном конце она имела узкую щель, через которую в неё попадал свет. На другом её конце располагалась двояковыпуклаялинза. Пройдя через линзу, свет выходил из неё параллельными лучами и направлялся на призму. Затем, разложенный призмой в спектр, он попадал во вторую трубу, которая представляла собой обычную зрительнуютрубу.

Впоследствии для исследования спектров Фраунгофер стал использовать не призмы, а дифракционные решётки, изготовленные из тончайших, близко расположенных металлических нитей. Тонкий пучок света в тёмном помещении, проходя через такую решётку, раскладывался на спектр.

Спектральный анализ

Создание спектроскопа

Йозеф Фраунгофер

Объектом исследований Фраунгофера был солнечный свет. В 1814 г. учёный обнаружил на непрерывном солнечном спектре отчётливые тёмные линии. Такие же линии он увидел и в спектрах Венеры и Сириуса, а также искусственных источников света.

Создание спектроскопа 

Нужно сказать, что ещё за 12 лет до этого, в 1802 г., эти же линии в солнечном спектре обнаружил английский учёный Уильям Хайд Волластон (Уолластон), изучая солнечный свет с помощью камеры-обскуры. Он подумал, что это линии, разделяющие цвета спектра, поэтому и не пытался найти объяснение их появлению.

Как и Волластон, Фраунгофер также не смог объяснить природу тёмных линий. Но линии эти стали называться Фраунгоферовы линии, а сам спектр - Фраунгоферовым спектром.

В 1854 г. немецкий химик-экспериментатор Роберт Вильгельм Бу́нзен изобрёл горелку, способную давать очень чистое белое пламя. Для чего нужна была такая горелка? Оказывается, атомы разных химических элементов испускают свет разной длины волны. И если нагревать в таком чистом пламени вещество, то пламя будет окрашиваться в разные цвета. Например, натрий даст ярко-жёлтый цвет пламени, калий - фиолетовый, барий - зелёный. Этот опыт называется пробой на окрашивание пламени. Именно по цвету пламени определяли в те времена химический состав вещества. Но если в пламя вводили сложное вещество, состоящее из нескольких элементов, то довольно трудно было точно определить его цвет.

Создание спектроскопа

Роберт Вильгельм Бунзен

В 1859 г. коллега Бунзена, один из великих физиков XIX века Густав Роберт Кирхгоф, предложил изучать не цвет пламени, окрашенного парами металлических солей, а его спектр. Говорят, что свой первый спектроскоп Бунзен и Кирхгоф сделали, распилив пополам подзорную трубу и поместив эти половинки в отверстия, проделанные в коробке из-под сигар, в которой находилась стеклянная призма. Так ли было на самом деле, сказать трудно, но с помощью спектроскопа они смогли продолжить опыты по определению спектра химических элементов, которые и позволили определить причину появления Фраунгоферовых линий.

Создание спектроскопа

Густав Роберт Кирхгоф

Учёные стали раскалять в чистом белом пламени образцы химических элементов, а затем пропускали световые лучи от них через призму, чтобы получить их спектр. К своему удивлению они обнаружили, что длина и частота некоторых ярких светлых линий в спектре этих элементов совпадает с длиной и частотой тёмных линий Фраунгофера в спектре Солнца. И вот это и стало ключом к разгадке природы этих линий.

Всё дело в том, что химический элемент поглощает лучи такой же частоты, которые сам и испускает. Это означает, что в солнечной короне находятся химические элементы, которые поглощают часть солнечного спектра, имеющего такую же частоту излучения. То есть, спектральные линии характеризуют химические элементы, излучающие их. Так как каждый элемент имеет свой спектр, отличный от спектров других элементов, то исследуя спектры небесных тел, можно определить их химический состав.

Так было положено начало спектральному анализу, позволившему определять качественный и количественный состав исследуемого объекта дистанционно.

Создание спектроскопа

Спектроскоп Кирхгофа-Бунзена

Позднее в спектроскоп была встроена шкала с делениями, обозначающими длины волн.

Спектроскопом часто называют настольный прибор, с помощью которого вручную рассматривают участки различных спектров. Спектроскоп, который способен регистрировать спектр для его дальнейшего анализа с помощью различных методов, называется спектрометром. Если окуляр спектроскопа заменить регистрирующим прибором (например, фотокамерой), то получится спектрограф.

Спектрометры способны исследовать спектры в широком диапазоне волн: от гамма до инфракрасного излучения.

Конечно, современные спектроскопы отличаются от своих предков. И хотя они имеют множество модификаций, функции их остались прежними.

Применение спектроскопов

Спектроскоп - основной инструмент спектроскопии. Без спектроскопа не могут обойтись химики и астрономы. С его помощью можно определить химический состав вещества, структуру поверхности, физические параметры объекта, исследовать космические объекты, находящиеся от нас на громадных расстояниях.