Устройство ядерного реактора

Устройство ядерного реактора

Цепная реакция деления всегда сопровождается выделением энергии огромной величины. Практическое использование этой энергии – основная задача ядерного реактора.

Ядерный реактор – это устройство, в котором осуществляется контролируемая, или управляемая, ядерная реакция деления.

По принципу работы ядерные реакторы делят на две группы: реакторы на тепловых нейтронах и реакторы на быстрых нейтронах.

Как устроен ядерный реактор на тепловых нейтронах

В типичном ядерном реакторе имеются:

  • Активная зона и замедлитель;
  • Отражатель нейтронов;
  • Теплоноситель;
  • Система регулирования цепной реакции, аварийная защита;
  • Система контроля и радиационной защиты;
  • Система дистанционного управления.

Устройство ядерного реактора

1 - активная зона; 2 - отражатель; 3 - защита; 4 - регулирующие стержни; 5 - теплоноситель; 6 - насосы; 7 - теплообменник; 8 - турбина; 9 - генератор; 10 - конденсатор.

Активная зона и замедлитель

Именно в активной зоне и протекает контролируемая цепная реакция деления.

Большинство ядерных реакторов работает на тяжёлых изотопах урана-235. Но в природных образцах урановой руды его содержание составляет всего лишь 0,72%. Этой концентрации недостаточно для того, чтобы цепная реакция развивалась. Поэтому руду искусственно обогащают, доводя содержание этого изотопа до 3%.

Делящееся вещество, или ядерное топливо, в виде таблеток помещается в герметично закрытые стержни, которые называются ТВЭЛы (тепловыделяющие элементы). Они пронизывают всю активную зону, заполненную замедлителем нейтронов.

Зачем нужен замедлитель нейтронов в ядерном реакторе?

Дело в том, что рождающиеся после распада ядер урана-235 нейтроны имеют очень высокую скорость. Вероятность их захвата другими ядрами урана в сотни раз меньше вероятности захвата медленных нейтронов. И если не уменьшить их скорость, ядерная реакция может затухнуть со временем. Замедлитель и решает задачу снижения скорости нейтронов. Если на пути быстрых нейтронов разместить воду или графит, их скорость можно искусственно снизить и увеличить таким образом число захватываемых атомами частиц. При этом для цепной реакции в реакторе понадобится меньшее количество ядерного топлива.

В результате процесса замедления образуются тепловые нейтроны, скорость которых практически равна скорости теплового движения молекул газа при комнатной температуре.

В качестве замедлителя в ядерных реакторах используется вода, тяжёлая вода (оксид дейтерия D2O), бериллий, графит. Но наилучшим замедлителем является тяжелая вода D2O.

Отражатель нейтронов

Чтобы избежать утечки нейтронов в окружающую среду, активную зону ядерного реактора окружают отражателем нейтронов. В качестве материала для отражателей часто используют те же вещества, что и в замедлителях.

Теплоноситель

Тепло, выделяющееся во время ядерной реакции, отводится с помощью теплоносителя. В качестве теплоносителя в ядерных реакторах часто используют обычную природную воду, предварительно очищенную от различных примесей и газов. Но поскольку вода закипает уже при температуре 1000С и давлении 1 атм, то для того чтобы повысить температуру кипения, повышают  давление в первом контуре теплоносителя. Вода первого контура, циркулирующая через активную зону реактора, омывает ТВЭЛы, нагреваясь при этом до температуры 3200С. Далее внутри теплообменника она отдаёт тепло воде второго контура. Обмен проходит через теплообменные трубки, поэтому соприкосновения с водой второго контура не происходит. Это исключает попадание радиоактивных веществ во второй контур теплообменника.

А далее всё происходит так, как на тепловой электростанции. Вода во втором контуре превращается в пар. Пар вращает турбину, которая приводит в движение электрогенератор, который и вырабатывает электрический ток.

В тяжеловодных реакторах теплоносителем служит тяжёлая вода D2O, а в реакторах с жидкометаллическими теплоносителями - расплавленный металл.

Система регулирования цепной реакции

Текущее состояние реактора характеризует величина, называемая реактивностью.

ρ = (k-1)/k,

k = ni/ni-1,

где k – коэффициент размножения нейтронов,

ni - количество нейтронов следующего поколения в ядерной реакции деления,

ni-1, - количество нейтронов предыдущего поколения в этой же реакции.

Если k ˃ 1, цепная реакция нарастает, система называется надкритической. Если k < 1, цепная реакция затухает, а система называется подкритической. При k = 1 реактор находится в стабильном критическом состоянии, так как число делящихся ядер не меняется. В этом состоянии реактивность ρ = 0.

Критическое состояние реактора (необходимый коэффициент размножения нейтронов в ядерном реакторе) поддерживается перемещением регулирующих стержней. В материал, из которого они изготовлены, входят вещества-поглотители нейтронов. Выдвигая или вдвигая эти стержни в активную зону, контролируют скорость реакции ядерного деления.

Система управления обеспечивает управление реактором при его пуске, плановой остановке, работе на мощности, а также аварийную защиту ядерного реактора. Это достигается изменением положения управляющих стержней.

Если какой-нибудь из параметров реактора (температура, давление, скорость нарастания мощности, расход топлива и др.) отклоняется от нормы, и это может привести к аварии, в центральную часть активной зоны сбрасываются специальные аварийные стержни и происходит быстрое прекращение ядерной реакции.

За тем, чтобы параметры реактора соответствовали нормам, следят системы контроля и радиационной защиты.

Для защиты окружающей среды от радиоактивного излучения реактор помещают в толстый бетонный корпус.

Системы дистанционного управления

Все сигналы о состоянии ядерного реактора (температуре теплоносителя, уровне излучения в разных частях реактора и др.) поступают на пульт управления реактора и обрабатываются в компьютерных системах. Оператор получает всю необходимую информацию и рекомендации по устранению тех или иных отклонений.

Реакторы на быстрых нейтронах

Устройство ядерного реактора

Отличие реакторов этого типа от реакторов на тепловых нейтронах в том, что быстрые нейтроны, возникающие после распада урана-235 не замедляются, а поглощаются ураном-238 с последующим превращением его в плутоний-239. Поэтому реакторы на быстрых нейтронах используют для получения оружейного плутония-239 и тепловой энергии, которую генераторы атомной станции преобразуют в электрическую энергию. 

Ядерным топливом в таких реакторах служит уран-238, а сырьём уран-235. 

В природной урановой руде 99,2745 % приходятся на долю урана-238. При поглощении теплового нейтрона он не делится, а становится изотопом урана-239. 

Через некоторое время после β-распада уран-239 превращается в ядро нептуния-239:

23992U → 23993Np + 0-1e

После второго β-распада образуется делящийся плутоний-239:

23993Np → 23994Pu + 0-1e

И, наконец, после альфа-распада ядра плутония-239 получают уран-235: 

23994Pu →23592U + 42He

ТВЭЛы с сырьём (обогащённым ураном-235) располагаются в активной зоне реактора. Эта зона окружена зоной воспроизводства, которая представляет собой ТВЭЛы с топливом (обедненным ураном-238). Быстрые нейтроны, вылетающие из активной зоны после распада урана-235, захватываются ядрами урана-238. В результате образуется плутоний-239. Таким образом, в реакторах на быстрых нейтронах производится новое ядерное топливо.

В качестве теплоносителей в ядерных реакторах на быстрых нейтронах применяют жидкие металлы или их смеси.

Классификация и применение ядерных реакторов

Устройство ядерного реактора

Основное применение ядерные реакторы нашли на атомных электростанциях. С их помощью получают электрическую и тепловую энергию в промышленных масштабах. Такие реакторы называют энергетическими.

Широко используются ядерные реакторы в двигательных установках современных атомных подводных лодок, надводных кораблей, в космической технике. Они снабжают электрической энергией двигатели и называются транспортными реакторами.

Для научных исследований в области ядерной физики и радиационной химии используют потоки нейтронов, гамма-квантов, которые получают в активной зоне исследовательских реакторов. Энергия, вырабатываемая ими, не превышает 100 Мвт и не используется в промышленных целях.

Мощность экспериментальных реакторов ещё меньше. Она достигает величины лишь нескольких кВт. На этих реакторах изучаются различные физические величины, значение которых важно при проектировании ядерных реакций.

К промышленным реакторам относят реакторы для получения радиоактивных изотопов, используемых для медицинских целей, а также в различных областях промышленности и техники. Реакторы для опреснения морской воды также относятся к промышленным реакторам.