Как развивалась электроника

Как развивалась электроника

Говоря об электронике, мы представляем себе компьютеры, телевизоры, печи СВЧ, мобильные телефоны и другие устройства. Между тем, это не только область техники, где создаются эти устройства. Это ещё и наука, занимающаяся изучением процессов, происходящих с заряженными частицами. Мы вряд ли получим ответ на вопрос, когда появилась электроника. Но проследить за историей её развития вполне возможно.

Современная электроника

Как развивалась электроника

В современной электронике можно выделить следующие основные области.

Бытовая электроника. К ней относятся все бытовые приборы – телевизоры, электроплиты, утюги, мобильные телефоны и др. В этих устройствах используют электрическое напряжение, электрический ток, электромагнитное поле или электромагнитные волны.

Энергетика. Это производство, передача и потребление электрической энергии. Сюда относят и электрические приборы высокой мощности – электростанции, электродвигатели, линии электропередач.

Микроэлектроника. В свою очередь она подразделяется на оптоэлектронику, звуко-видео-технику и цифровую электронику.

Приборы оптоэлектроники служат для преобразования светового излучения в электрический ток. К ним относятся фотодиоды, фототранзисторы, фоторезисторы и др. Другой тип приборов: светодиоды, лазеры, лампы накаливания, наоборот, преобразуют электрический ток в световое излучение.

Звуко-видео-техника – это устройства, в которых происходит преобразование звука и изображения.

К цифровой микроэлектронике относятся компьютеры, цифровые телевизоры, мобильные телефоны, панели управления устройствами и др.

Основной активный элемент в электронике - микросхема.

Из истории

Как развивалась электроника

Как появилась электроника?

Современному человеку трудно представить, как можно передать информацию на большое расстояние, не имея телефона, радио или компьютера, подключенного к интернету. Между тем потребность делиться информацией у человечества была всегда. И делалось это самыми различными способами. Древние люди предупреждали друг друга об опасности, подавая сигналы криком, разжигая костры, издавая барабанную дробь. Позже появилась голубиная почта, новости приносили специальные гонцы. В Китае информацию передавали с помощью воздушных змеев, окрашенных по-разному в зависимости от вида информации, которую они несли. Пожалуй, самым распространённым был световой способ передачи. На всём протяжении линии связи устанавливались башни, на каждой из которых зажигали огонь, как только его видели на предыдущей башне. И так сигнал передавался по цепи. Позднее, когда изобрели зеркало, сообщения начали посылать от башни к башне с помощью отражённых световых сигналов. На море для передачи информации использовалась азбука Морзе, в которой символы кодировались с помощью различных положений сигнальных флажков.

Словом, самых разных способов человечество придумало немало, но все они действовали лишь на коротком расстоянии и вряд ли могли нормально работать, когда видимость ухудшалась.

Первый электромагнитный телеграф

Как развивалась электроника

Электромагнитный телеграф Шиллинга

Всё изменилось, когда изобрели электрический телеграф. Точнее, это был электромагнитный телеграф, использовавший электромагнетизм для передачи сигналов.

Многие физики пытались создать такой прибор, но первым его придумал русский дипломат, изобретатель-электротехник, балтийский немец по происхождению, Павел Львович Шиллинг.  После открытия Эрстедом воздействия электрического тока на магнитную стрелку, он понял, что на основе этого явления можно создать телеграф. Его передающее устройство состояло из 16 клавиш, с помощью которых замыкались электрические цепи тока прямого и обратного направлений. На принимающем устройстве были установлены 6 мультипликаторов с магнитными стрелками. Эти стрелки подвешивались на нитях. С одной стороны к ним прикреплялись белые бумажные кружочки, с другой чёрные. Замыкая цепи с помощью клавиш, посылали ток того или иного направления. В принимающем устройстве под воздействием электрического тока отклонялась одна из магнитных стрелок в сторону белого или чёрного кружочка в зависимости от направления тока. Таким способом кодировались буквы алфавита. Устройства соединялись подземным кабелем.

Как развивалась электроника

Павел Львович Шиллинг

Впервые Шиллинг продемонстрировал своё изобретение 21 октября 1832 г. в собственной квартире. Позднее он установил этот телеграф в Петербурге между Зимним дворцом и зданием министерства путей сообщения.

Свои модификации электромагнитного телеграфа создали немецкий учёный Карл Фридрих Гаусс и немецкий учёный Макс Вебер. Но на больших расстояниях они не применялись.

Первую телеграфную линию, действовавшую на расстоянии 5 км, создал в 1838 г. немецкий физик Карл Август Штейнгейль.

В 1895 г. русский физик Александр Степанович Попов изобрёл радио. Это была беспроводная электросвязь, носителем сигнала в которой были электромагнитные волны, распространяющиеся в пространстве свободно, без проводников. Это событие можно считать началом рождения электроники.

Как развивалась электроника

Александр Степанович Попов

В действующую модель радио входили радиопередатчик, излучающий сигнал, и приёмник, принимающий его. Радиосвязь сразу же стала широко использоваться в военном деле. Появилась необходимость в новых элементах для неё. Их созданием и занялась электроника.

Когда компьютеры были большими

Конечно, в 1905 г. микросхем ещё не существовало. Зато в этом году была изобретена радиолампа. В простейшем варианте она представляла собой стеклянный герметичный баллон с вакуумом внутри. Наружу были выведены 2 электрода – катод и анод. Третья нить выполняла функцию нагрева. По ней пропускали электрический ток. Нить разогревалась до очень высокой температуры в несколько сотен, а иногда и тысяч градусов. Между электродами создавалась большая разность потенциалов в 100-300 в. Катод, к которому подводилось отрицательное напряжение, нагревался и начинал испускать электроны. Поток электронов устремлялся к аноду, соединённому с источником положительного напряжения. В лампе возникал электрический ток.

Как развивалась электроника

Электронные лампы

С этого момента электроника начала развиваться семимильными шагами. Радиолампы совершенствовались. В начале 40-х годов ХХ века в год их выпускалось уже несколько миллионов самых разных размеров и конструкций. Ток в некоторых из них создавали не электроны, а ионы – частицы, имеющие положительный заряд. На их основе были созданы совершенно новые радиоприёмники и передатчики. Появились проигрыватели пластинок, магнитофоны, первые модели телевизоров.

Из радиоламп состояла элементная база первых компьютеров, которые появились после второй мировой войны в США в 1948 г. и назывались ЭВМ (электронные вычислительные машины). Так как в одной ЭВМ были десятки тысяч радиоламп, то компьютеры имели огромные размеры. Для их размещения также требовались большие залы.

Как развивалась электроника

ЭВМ Урал-1

Конечно, долго так продолжать не могло. Можно сказать, что дальнейшее развитие электроники связано с развитием компьютерной техники. Со временем радиолампы, которые к тому же потребляли большую мощность, были вытеснены полупроводниковыми диодами и транзисторами.

Полупроводниковый диод

Как развивалась электроника

Полупроводниковые диоды

Как же устроен простейший полупроводниковый прибор – диод?

Он состоит из двух примыкающих друг к другу слоёв полупроводника. В одном слое (n -  проводимость) избыток свободных электронов, а в другом (p – проводимость) – их недостаток, поэтому в том месте, где не хватает электрона, образуется «дырка», имеющая положительный заряд.

Если подать на катод диода (слой, в котором избыток электронов), отрицательный заряд, а на анод положительный, то начнётся движение зарядов, и через переход между слоями пойдёт электрический ток. Такое включение называется «прямым». Диод в этом состоянии открыт.

Как развивалась электроника

Диод открыт

Если же на анод подаётся отрицательный заряд, а на катод положительный, то электроны начинают двигаться к «плюсу», а «дырки» к минусу. Тока через переход не будет. Диод закрыт.

Как развивалась электроника

Диод закрыт

С появлением полупроводниковых приборов размеры радиоприёмников, телевизоров и других устройств значительно уменьшились, а качество их работы перешло на новый уровень. ЭВМ уже не занимали огромных площадей, но их размеры всё равно оставались большими, а потребляемая мощность была всё ещё довольно велика.

Интегральные микросхемы

Как развивалась электроника

Интегральные микросхемы

Но электроника не стояла на месте. Постепенно отдельные диоды и транзисторы уступили место интегральным микросхемам (ИС).

В любом электронном устройстве происходит обработка электрического сигнала. Это происходит с помощью электрической цепи, которая включает в себя не только транзисторы и диоды. В ней есть и другие основные компоненты: конденсаторы, резисторы, катушки индуктивности. На заре развития электроники они объединялись в одну электронную схему с помощью проводников. И вся эта схема располагалась на одной плате. Каждый такой отдельный элемент можно было заменить, не трогая другие элементы электрической цепи. Это и делал, например, мастер, когда выходил из строя телевизор.

А в ИС вся электронная схема, выполняющая определённые логические функции, собиралась в едином корпусе маленьких размеров.

Конечно, это был огромный шаг вперёд. Он привёл к резкому росту быстродействия электронных устройств. И хотя габариты их значительно уменьшились, к примеру, оперативная память объёмом всего в 8 Мб российской ЭВМ ЕС-1046 в 80-е годы ХХ века всё ещё была размером с целый шкаф.

Печатные платы

Как развивалась электроника

Печатная плата

Создание интегральных микросхем стало толчком к бурному развитию основной отрасли современной электроники – микроэлектроники.

В любом современном электронном устройстве, будь то компьютер, мобильный телефон, телевизор или стиральная машина, есть печатная плата. В ней все электрические связи выполняются уже не проводами. Их заменили проводящие дорожки, покрытые медной фольгой. И расположены они на этой самой печатной плате. Это специальная пластина из диэлектрика (текстолита, гетинакса и др.). Кроме проводящих дорожек на ней созданы специальные контактные площадки, монтажные отверстия для установки радиоэлементов, экранирующие поверхности, ламели разъёмов и др. Печатные платы могут быть однослойными, а могут состоять их нескольких слоёв.

Кстати, не нужно думать, что печатные платы появились в ХХ веке одновременно с появлением микросхем. Годом их рождения физики считают 1902 г., когда немецкий инженер Альберт Хансон, занимавшийся разработками в области телефонии, подал заявку на патент. Плата, которую он создал, считается прототипом современных печатных плат. Основанием платы Хансена служила бумага, пропитанная парафином, на которую наклеивались полоски из бронзовой или медной фольги, служившие проводниками. 

Но массово печатные платы стали применяться в электрических приборах в середине прошлого века. В специальных отверстиях в них крепились сначала радиолампы, затем транзисторы, а потом и микросхемы.

На ИС электроника не остановилась. Процесс уменьшения размеров активных элементов в ней происходит непрерывно. И сейчас уже размер транзистора, собранного на полупроводниковом чипе, составляет всего несколько нанометров. Не правда ли, огромный прогресс по сравнению с электронной радиолампой, размер которой достигал нескольких сантиметров? 

Именно этот прогресс позволил телевизорам, компьютерам, мобильным телефонам и другим гаджетам стать такими, какими мы их видим в настоящий момент.