Особенности авиационных двигателей

Особенности авиационных двигателей

Двигатель называют сердцем самолёта. И это действительно так. Ведь без него самолёт перестанет быть самолётом. Чем мощнее двигатель, тем быстрее самолёт преодолеет силу сопротивления воздуха и тем большую скорость он сможет развить.

«Но то же самое можно сказать и об автомобиле», - возразите вы. И будете правы. Без двигателя ни самолёт, ни автомобиль не смогут двигаться.

Для чего же нужен двигатель?

Любой двигатель, авиационный или автомобильный, предназначен для создания тяги. И принцип работы у них почти одинаков. Но авиационные двигатели всё-таки имеют свои особенности. Они отличаются от автомобильных размерами и меньшим удельным весом, то есть, весом, приходящимся на единицу мощности. Удельный вес авиационных двигателей в десятки и даже сотни раз меньше удельного веса автомобильных. Ну и, конечно же, в авиации они выполнятся из более лёгких и прочных материалов. Конструкция авиационного двигателя такова, что он может надёжно работать в любом перевёрнутом положении, ведь самолёту иногда приходится выполнять различные манёвры в воздухе. И ещё одна его важная особенность – возможность устойчиво работать, не теряя мощность, на высоте, когда падают плотность и давление воздуха.

Авиационные двигатели

Особенности авиационных двигателей

Первые двигатели, предназначенные специально для авиации, начали проектировать и строить в начале ХХ века. Они представляли собой двигатели внутреннего сгорания, устройство которых было позаимствовано у автомобильных двигателей.

По мере развития авиации изменялись и авиационные двигатели. Все известные современные их модификации можно разделить на 2 принципиально отличающиеся группы: двигатели, способные работать только в пределах атмосферы и такие, для работы которых наличие атмосферы не требуется.

Двигатели первой группы называются воздушными, или атмосферными. А вторая группа получила название ракетных. Их принципиальное различие в том, что для воздушных двигателей рабочим телом, совершающим механическую работу, является атмосфера. А у ракетных рабочее тело находится в самом летательном аппарате.

Авиационный двигатель, как и любой другой, преобразует энергию топлива в кинетическую энергию. В любом из них происходит реакция горения топлива. А для протекания этой реакции необходим кислород. В воздушных двигателях этот кислород берётся из атмосферы. А в ракетных окислитель находится на борту летательного аппарата.

Винтовые двигатели

Воздушные двигатели делятся на винтовые и реактивные.

В свою очередь, винтовые подразделяются на винто-моторные, или поршневые, и турбовинтовые. И у тех, и у других движителем служит воздушный винт. Но у винтомоторных тепловой машиной является мотор, а у турбовинтовых – турбокомпрессор.

Поршневой (винто-моторный) двигатель

Особенности авиационных двигателей

Поршневые двигатели  можно назвать ровесниками современной авиации. Они устанавливались на первых самолётах, поднятых в воздух братьями Райт. И вплоть до 40-х годов ХХ века альтернативы им не было. Но, несмотря на то, что впоследствии были изобретены и другие двигатели, основанные на совершенно другом принципе работы, поршневые используются в авиации и сейчас.

Современный авиационный поршневой двигатель представляет собой двигатель внутреннего сгорания (ДВС). Принцип его работы такой же, как и у автомобильных ДВС. Разница лишь в том, что движение поршня через специальные механизмы в автомобиле передаётся на колёса, а в самолёте – на воздушный винт. А лопасти винта захватывают воздух, отбрасывают его назад, тем самым создавая тягу.

Турбовинтовой двигатель (ТВД)

Особенности авиационных двигателей

1 - воздушный винт; 2 - редуктор; 3- турбокомпрессор.

Турбовинтовой двигатель является разновидностью газотурбинного двигателя.

Простейшую конструкцию газотурбинного двигателя можно представить как вал, на котором находятся два диска с лопатками, между которыми расположена камера сгорания. Первый диск – диск компрессора. Второй – диск турбины. Атмосферный воздух сжимается в компрессоре и подаётся в камеру сгорания. Туда же подаётся и топливо. Смесь воздуха с топливом с помощью свечи зажигания поджигается и сгорает, образуя продукты сгорания под высоким давлением, которые приводят во вращение диск турбины. Таким образом, энергия сжатого и нагретого газа преобразуется в механическую работу.

Особенности авиационных двигателей

Газотурбинный двигатель первоначально был разработан вовсе не для авиации. В нём нет выходящей реактивной струи. Вся его мощность сосредоточена на валу, который вращает нужные агрегаты. Но в турбовинтовом авиационном двигателе вал приводит во вращение винт, который через редуктор укрепляется на нём перед компрессором. А винт уже и создаёт тягу.

Существуют вертолётные турбовинтовые двигатели, которые приводят в движение несущий винт вертолёта.

Реактивные двигатели

К реактивным относятся турбореактивные, турбореактивные двухконтурные, прямоточные и пульсирующие реактивные двигатели.

Турбореактивный двигатель (ТРД)

Особенности авиационных двигателей 

Этот тип двигателя является основным в реактивной авиации.

Сила тяги, необходимая для движения, создаётся путём преобразования внутренней энергии топлива в кинетическую энергию реактивной струи продуктов сгорания топлива.

В теплотехнике существует понятие «рабочее тело». Это какое-то условное тело, которое расширяется при нагревании и сжимается при охлаждении. Энергию рабочее тело получат при сжатии, а при расширении оно выполняет механическую работу, благодаря которой приводится в движение рабочий орган.

В турбореактивном авиационном двигателе рабочим телом является атмосферный воздух, который через входное устройство подаётся в компрессор, где и сжимается. Следующий этап – камера сгорания, где воздух нагревается и смешивается с продуктами сгорания керосина. Образовавшаяся газовоздушная смесь попадает на турбину, через рабочие лопатки вращает её, расширяется и теряет часть своей энергии. Эта энергия превращается в механическую энергию основного вала, расходуется на работу компрессора, а также на работу топливных и масляных насосов, привода электрогенераторов, которые вырабатывают электроэнергию для различных бортовых систем самолёта.

Но основная часть энергии газовоздушной смеси разгоняется в специальном сужающемся устройстве, которое называется реактивное сопло. За счёт реактивной струи появляется сила тяги двигателя.

На сверхзвуковых самолётах применяют турбореактивные двигатели с форсажной камерой. В них между турбиной и соплом установлена дополнительная камера, которая и называется форсажной. В этой камере сжигается дополнительное топливо, что вызывает увеличение тяги (форсаж) до 50 %. Но его расход в таких двигателях значительно выше, чем у обычных ТРД.

Турбореактивный двухконтурный двигатель (ТРДД)

Особенности авиационных двигателей

1 - компрессор низкого давления; 2 - внутренний контур; 3 - выходной поток внутреннего контура; 4 - выходной поток внешнего контура.

Этот двигатель имеет два контура: внутренний и внешний. Его отличие от обычного турбореактивного заключается в том, что весь воздушный поток сначала попадает в компрессор низкого давления. Затем основная часть воздуха проходит по внутреннему контуру такой же путь, как и в обычном турбореактивном двигателе. То есть, попадает в другой компрессор, сжимается, нагревается, смешивается в камере сгорания с топливом и разгоняется в сопле для образования реактивной тяги. А вторая часть воздуха проходит напрямую по внешнему контуру поверх внутреннего контура, оставаясь холодной, и выбрасывается, не сгорая. Тем самым создаётся дополнительная тяга и уменьшается расход топлива, что очень важно для самолёта. А также снижается и шум двигателя.

Прямоточный воздушно-реактивный двигатель (ПВРД)

Особенности авиационных двигателей

1 - воздух; 2 - впрыск горючего; 3 - стабилизатор пламени; 4 - камера сгорани; 5 - сопло; 6 - форсунки.

Этот двигатель не имеет ни турбины, ни компрессора. Он состоит из трёх обязательных элементов: диффузора, камеры сгорания и сопла.

Диффузор повышает статистическое давление за счёт торможения встречного потока воздуха. В камере сгорания происходит сгорание топлива. Окислителем служит кислород воздуха, поступающий из диффузора. Тяга создаётся за счёт реактивной струи, вытекающей из сопла.

В зависимости от скорости полёта ПВРД подразделяют на дозвуковые, сверхзвуковые и гиперзвуковые. Каждая из групп имеет свои конструктивные особенности.

Пульсирующий воздушно-реактивный двигатель

Особенности авиационных двигателей

1 - воздух; 2 - горючее; 3 - клапанная решётка; 4 - форсунки; 5 - свеча зажигания; 6 - камера сгорания; 7 - сопло.

В таком двигателе имеется камера сгорания с входными клапанами и длинное выходное сопло цилиндрической формы. Когда клапаны открываются, в камеру сгорания подаются воздух и топливо. Искра свечи зажигания поджигает смесь. Образуется избыточное давление, которое закрывает клапаны. А продукты сгорания выбрасываются через сопло, тем самым создавая реактивную тягу.

И прямоточные, и пульсирующие воздушно-реактивные двигатели на практике применяются довольно редко.

Ракетные двигатели

Особенности авиационных двигателей

В авиации ракетные двигатели используются в особых случаях как дополнительные двигатели для сокращения длины разбега самолёта при взлёте или сокращения длины пробега при посадке, а также для увеличения мощности при полётах в чрезвычайных ситуациях. Применяют их и на исследовательских или экспериментальных самолётах.

Ракетные двигатели разделяются на твёрдотопливные и жидкостные. В твёрдотопливных (РДТТ) и топливо, и окислитель находятся в твёрдом состоянии, а в жидкостных (ЖРД) – в жидком агрегатном состоянии. Сгорание топлива происходит в камере сгорания – основной части ракетного двигателя. А газы, образуемые при сгорании, выбрасываются через реактивное сопло, создавая реактивную тягу.

Так как окислитель для горения ракетные двигатели везут с собой, то они не зависят от воздушной среды, и прекрасно зарекомендовали себя в разреженном и безвоздушном пространстве. Их используют для подъёма и разгона баллистических ракет, космических кораблей, запуска спутников.