Как преодолеть земное притяжение

Как преодолеть земное притяжение

Человечество давно стремилось в космос. Но как оторваться от Земли? Что мешало человеку взлететь к звёздам?

Как мы уже знаем, мешало этому земное притяжение, или гравитационная сила Земли - главное препятствие для космических полётов.

Земное притяжение

Как преодолеть земное притяжение

Все физические тела, находящиеся на Земле, подчиняются действию закона всемирного тяготения. Согласно этому закону все они притягивают друг друга, то есть действуют друг на друга с силой, которая называется гравитационной силой, или силой тяготения.

Величина этой силы прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними.

 Как преодолеть земное притяжение

Так как масса Земли очень велика и значительно превышает массу любого материального тела, находящегося на её поверхности, то сила тяготения Земли значительно больше сил тяготения всех других тел. Можно сказать, что по сравнению с силой тяготения Земли они вообще незаметны.

Земля притягивает к себе абсолютно всё. Какой бы предмет мы ни бросили вверх, под действием силы тяготения он обязательно вернётся на Землю. Вниз падают капли дождя, вода стекает с гор, осыпается листва с деревьев. Любой предмет, который мы уронили, также падает на пол, а не на потолок.

Главное препятствие для полётов в космос

Как преодолеть земное притяжение

Земное тяготение не даёт возможности летательным аппаратам покинуть Землю. И преодолеть его нелегко. Но человек научился это делать.

Понаблюдаем за мячом, лежащим на столе. Если он скатится со стола, то сила притяжения Земли заставит его упасть на пол. Но если мы возьмём мяч и с силой бросим вдаль, то упадёт он не сразу, а спустя некоторое время, описав траекторию в воздухе. Почему же он смог преодолеть земное притяжение хотя бы на короткое время?

А произошло вот что. Мы приложили к нему силу, тем самым сообщив ускорение, и мяч начал двигаться. И чем большее ускорение получит мяч, тем выше будет его скорость и тем дальше и выше он сможет улететь.

Представим себе установленную на вершине горы пушку, из которой выпущен снаряд А с большой скоростью. Такой снаряд способен пролететь несколько километров. Но, в конце концов, снаряд всё равно упадёт на землю. Его траектория под действием земного притяжения имеет изогнутый вид. Снаряд В вылетает из пушки с большей скоростью. Траектория его полёта более вытянутая, а сам он приземлится намного дальше. Чем большую скорость получает снаряд, тем прямее становится его траектория и тем большее расстояние он пролетает. И, наконец, при определённой скорости траектория снаряда С приобретает форму замкнутой окружности. Снаряд делает один круг вокруг Земли, другой, третий и уже не падает на Землю. Он становится искусственным спутником Земли.

Конечно, пушечные снаряды в космос никто не отправляет. А вот космические аппараты, получившие определённую скорость, спутниками Земли становятся.

Первая космическая скорость

 Как преодолеть земное притяжение

Какую же скорость должен получить космический аппарат, чтобы преодолеть земное притяжение?

Минимальная скорость, которую нужно сообщить объекту, чтобы вывести его на околоземную круговую (геоцентрическую) орбиту, называется первой космической скоростью.

Вычислим значение этой скорости относительно Земли.

На тело, находящееся на орбите, действует сила тяготения, направленная к центру Земли. Она же является центростремительной силой, пытающейся притянуть это тело к Земле. Но тело на Землю не падает, так как действие этой силы уравновешивается другой силой – центробежной, которая пытается вытолкнуть его. Приравнивая формулы этих сил, вычислим первую космическую скорость.

Как преодолеть земное притяжение

 

Как преодолеть земное притяжение 

 

где m – масса объекта, находящегося на орбите;

M – масса Земли;

v1 – первая космическая скорость;

R – радиус Земли

G – гравитационная постоянная.

M = 5,97·1024 кг, R = 6 371 км. Следовательно, v1 ≈ 7,9 км/с

Значение первой земной космической скорости зависит от радиуса и массы Земли и не зависит от массы тела, выводимого на орбиту.

По этой формуле можно вычислить первые космические скорости и для любой другой планеты. Конечно, они отличаются от первой космической скорости Земли, так как небесные тела имеют различные радиусы и массы. К примеру, первая космическая скорость для Луны равна 1680 км/с.

На орбиту искусственный спутник Земли выводит космическая ракета, разгоняющаяся до первой космической скорости и выше и преодолевающая земное притяжение.

Начало космической эры

Как преодолеть земное притяжение

Первая космическая скорость была достигнута в СССР 4 октября 1957 г. В этот день земляне услышали позывные первого искусственного спутника Земли. Он был запущен на орбиту с помощью космической ракеты, созданной в СССР. Это был металлический шар с усиками-антеннами, весивший всего 83,6 кг. А сама ракета обладала огромной для того времени мощностью. Ведь для того чтобы вывести на орбиту всего 1 дополнительный килограмм веса, вес самой ракеты должен был увеличиться на 250-300 кг. Но усовершенствование конструкций ракеты, двигателей и систем управления позволило вскоре отправить на земную орбиту гораздо более тяжёлые космические аппараты.

Второй космический спутник, запущенный в СССР 3 ноября 1957 г., весил уже 500 кг. На его борту была сложная научная аппаратура и первое живое существо – собака Лайка.

15 мая 1958 г. на орбиту вышел третий советский спутник, весивший уже 1327 кг.

В истории человечества началась космическая эра.

Вторая космическая скорость

Как преодолеть земное притяжение

Под действием земного притяжения спутник будет двигаться над планетой по круговой орбите горизонтально. Он не упадёт на поверхность Земли, но и не перейдёт на другую, более высокую орбиту. А чтобы он смог это сделать, ему нужно придать другую скорость, которая называется второй космической скоростью. Эту скорость называют параболической, скоростью убегания, скоростью освобождения. Получив такую скорость, тело перестанет быть спутником Земли, покинет её окрестности и станет спутником Солнца.

Если скорость тела при старте с поверхности Земли выше первой космической скорости, но ниже второй, его околоземная орбита будет иметь форму эллипса. А само тело останется на околоземной орбите.

Тело, получившее при старте с Земли скорость, равную второй космической скорости, будет двигаться по траектории, имеющей форму параболы. Но если эта скорость даже немного превысит значение второй космической скорости, его траектория станет гиперболой.

Вторая космическая скорость, как и первая, для разных небесных тел имеет разное значение, так как зависит от массы и радиуса этого тела.

Вычисляется она по формуле:

Как преодолеть земное притяжение

Между первой и второй космической скорость сохраняется соотношение

Как преодолеть земное притяжение

 

Для Земли вторая космическая скорость равна 11,2 км/с.

Впервые ракета, преодолевшая земное притяжение, стартовала 2 января 1959 г. в СССР. Через 34 часа полёта она пересекла орбиту Луны и вышла в межпланетное пространство.

Вторая космическая ракета в сторону Луны была запущена 12 сентября 1959 г. Затем были ракеты, которые достигли поверхности Луны и даже осуществили мягкую посадку.

Впоследствии космические аппараты отправились и к другим планетам.